OpenAI 在其 API 中引入了结构化输出功能,这意味着模型的输出可以可靠地遵循开发人员提供的 JSON 模式。
对复杂 JSON 模式进行评估时,具有结构化输出的新模型 gpt-4o-2024-08-06 得分为 100%。相比之下,gpt-4-0613 得分不到 40%。
这一功能包括两种形式:
- 函数调用:通过在函数定义中设置
strict: true
可以使用工具的结构化输出。此功能适用于支持工具的所有型号大模型,包括所有型号 gpt-4-0613 和 gpt-3.5-turbo-0613 及更高版本。启用结构化输出后,模型输出将与提供的工具定义匹配。 -
response_format
参数新选项:开发人员现在可以使用新参数 JSON 模式json_schema
。此功能适用于最新的 GPT-4o 模型:gpt-4o-2024-08-06
、gpt-4o-mini-2024-07-18
。当response_format
设定strict: true
,模型输出将与提供的模式匹配。
函数调用通过在函数定义中设置结构化输出,使模型输出与提供的工具定义相匹配,适用于所有支持工具的模型。参数 response_format
允许开发人员通过提供 JSON 模式来约束模型的响应格式,适用于最新的 GPT-4o 模型。此外,新的结构化输出功能遵循 OpenAI 的安全政策,允许模型拒绝不安全的请求,并通过新的字符串值 refusal
在 API 响应中允许开发人员以编程方式检测模型的拒绝。
同时 OpenAI 还提供了原生 SDK 支持结构化输出,包括 Python 和 Node SDK,简化了开发过程。结构化输出还支持从非结构化数据中提取结构化数据,如会议记录中的待办事项和截止日期。为了实现这一功能,OpenAI 采用了基于上下文无关语法 (CFG) 的受限解码方法,而不是传统的有限状态机 (FSM) 或正则表达式,以处理更复杂的嵌套或递归数据结构。具体原理可以查看官方博客深入了解:https://openai.com/index/introducing-structured-outputs-in-the-api
结构化输出目前已在 API 中正式推出,支持所有支持函数调用的模型,包括 GPT-4o 和 GPT-4o-mini 系列,以及之后的所有模型。此功能还与视觉输入兼容,并且可以在 chat.completion API、助手 API 和批处理 API 上使用。结构化输出的引入有助于开发人员构建更可靠的 AI 应用程序,并且可以节省输入输出费用。
简单看一下示例:
1、Function Calling:
POST /v1/chat/completions{ "model": "gpt-4o-2024-08-06", "messages": [ { "role": "system", "content": "You are a helpful assistant. The current date is August 6, 2024. You help users query for the data they are looking for by calling the query function." }, { "role": "user", "content": "look up all my orders in may of last year that were fulfilled but not delivered on time" } ], "tools": [ { "type": "function", "function": { "name": "query", "description": "Execute a query.", "strict": true, "parameters": { "type": "object", "properties": { "table_name": { "type": "string", "enum": ["orders"] }, "columns": { "type": "array", "items": { "type": "string", "enum": [ "id", "status", "expected_delivery_date", "delivered_at", "shipped_at", "ordered_at", "canceled_at" ] } }, "conditions": { "type": "array", "items": { "type": "object", "properties": { "column": { "type": "string" }, "operator": { "type": "string", "enum": ["=", ">", "<", ">=", "<=", "!="] }, "value": { "anyOf": [ { "type": "string" }, { "type": "number" }, { "type": "object", "properties": { "column_name": { "type": "string" } }, "required": ["column_name"], "additionalProperties": false } ] } }, "required": ["column", "operator", "value"], "additionalProperties": false } }, "order_by": { "type": "string", "enum": ["asc", "desc"] } }, "required": ["table_name", "columns", "conditions", "order_by"], "additionalProperties": false } } } ]}
格式化输出:
{ "table_name": "orders", "columns": ["id", "status", "expected_delivery_date", "delivered_at"], "conditions": [ { "column": "status", "operator": "=", "value": "fulfilled" }, { "column": "ordered_at", "operator": ">=", "value": "2023-05-01" }, { "column": "ordered_at", "operator": "<", "value": "2023-06-01" }, { "column": "delivered_at", "operator": ">", "value": { "column_name": "expected_delivery_date" } } ], "order_by": "asc"}
2、response_format
参数方式:
POST /v1/chat/completions{ "model": "gpt-4o-2024-08-06", "messages": [ { "role": "system", "content": "You are a helpful math tutor." }, { "role": "user", "content": "solve 8x + 31 = 2" } ], "response_format": { "type": "json_schema", "json_schema": { "name": "math_response", "strict": true, "schema": { "type": "object", "properties": { "steps": { "type": "array", "items": { "type": "object", "properties": { "explanation": { "type": "string" }, "output": { "type": "string" } }, "required": ["explanation", "output"], "additionalProperties": false } }, "final_answer": { "type": "string" } }, "required": ["steps", "final_answer"], "additionalProperties": false } } }}
格式化输出:
{ "steps": [ { "explanation": "Subtract 31 from both sides to isolate the term with x.", "output": "8x + 31 - 31 = 2 - 31" }, { "explanation": "This simplifies to 8x = -29.", "output": "8x = -29" }, { "explanation": "Divide both sides by 8 to solve for x.", "output": "x = -29 / 8" } ], "final_answer": "x = -29 / 8"}
最后再来看一下当前世面上的一些格式化输出框架: