本篇文章给大家谈谈多目标优化的权重确定,以及多目标优化方法及实例解析对应的知识点,希望对各位有所帮助,不要忘了收藏本站喔。

本文目录一览:

多目标优化中权重设置问题?

你这个问题太专业了。我试着回答一下。

权重指数你可以在计算的时候分开计算。比如温湿度合计权嫌隐御重40%,携运在计算的时候你就分开计算,例如:15%+25%。然后你在最后合计的时候写成一个芹岩数值就可以了。这样也不影响精度,也达到了你的要求。

优化目标的操作方法

多目标优化的理论和求解方法是一个长期的研究课题,目前存在着理论不完善、算法不成熟等问题。在理论方面,对最优解质量或满意度的客观度量还没有一个非常成熟的理论与与实用性好的方法;在多目标优化算法中,其收敛性的数学证明还存在不足;在计算精度方面,数值计算本身的误差也常导致结果的误差,产生伪有效解;进化算法中进化算子的误差也会导致过早收敛于单个解,即产生漂移现象。另外,算法计算速度的提高、高维多目标优化等,也是值得研究的问题,这些都可作为进一步研究的方向。

多目标进化算法(multi-objective evolutionary algorithm,EA)此算法适用于求解复杂的多目标优化问题并得到了广泛的应用。多目标进化算法是一种基于群体的启发式方法,针对含多个互相冲突的目标的优化问题。主要模拟生物自然选择与进化的过程,采用随机搜素策略,主要运用重组、变异和选择这三个算子实现优化问题的求解。在多目标燃郑进化算法中,使用一维的串结构数据来表示变量,也称为基因型个体(individual)。一定数量的个体组成了种群(population),种群中个体的数目称为种群规模(population size)变量会经历基因重组-变异-评估并选择,产生新的个体,适应程度更好(目标值更小)的个体将在一代代淘汰中留下,成为优胜个体世段稿,即非支配解 (进化后期的红点)。

模糊优化,多目标最优解同各子目标最优解密切相关,但子目标之间,各子目标最优解同多目标最优解之间的关系是模糊的,所以用模糊优化方法能得到某种意义下的满意结果。其基本步骤为:先求出各个单目标的约束最优解再将各最优解模糊化,然后求能使各模糊最优解交集的隶属函数取最大值的解,此解便为最优解。为了通过赋予权数来反映各目标的重要程度,可按照各目标的重要程度,选择不同的隶属度函数类型和搜孝调整隶属度函数的参数,来调整各单目标最优解的模糊集的分布状态,从而可得出不同权重分配下的多目标最优解。但隶属度函数在本质上,也是一种评价函数,所以笔者认为仍存在其评价意义的准确性,多目标最优的真实性。

多目标优化的权重确定(多目标优化方法及实例解析)插图

多目标优化算法

姓名:袁卓成多目标优化的权重确定;学号:20021210612; 学院:电子工程学院

转自

【嵌牛导读】 本文介绍了各类多目标优化算法

【嵌牛鼻子】  多目标优化, pareto

【嵌牛提问】 多目标优化算法有哪些?

【嵌牛正文】

1)无约束和有约束条件;

2)确定性和随机性最优问题(变量是否确定);

3)线性优化与非线性灶雀者优化(目标函数和约束条件是否线性);

4)静态规划和动态规划(解是否随时间变化)。

使多个目标在给定区域同时尽可能最佳,多目标优化的解通常是一组均衡解(即一组由众多 Pareto最优解组成的最优解集合 ,集合中的各个元素称为 Pareto最优解或非劣最优解)。

①非劣解——多目标优化问题并不存在一个最优解,所有可能的解都称为非劣解,也称为Pareto解。

②Pareto最优解——无法在改进任何目标函数的同时不削弱至少一个其多目标优化的权重确定他目标函数。这种解称作非支配解或Pareto最优解。

多目标优化问题不存在唯一的全局最优解 ,过多的非劣解是无法直接应用的 ,所以在求解时就是要寻找一个最终解。

(1)求最终解主要有三类方法:

一是求非劣解的生成法,即先求出大量的非劣解,构成非劣解的一个子集,然后按照决策者的意图找出最终解;(生成法主要有加权法﹑约束法﹑加权法和约束法结合的混合法以及多目标遗传算法)

二为交互法,不先求出很多的非劣解,而是通过分析者与决策者对话的方式,逐步求出最终解;

三是事先要求决策者提供目标之间的相对重要程度,算法以此为依据,将多目标问题转化为单目标问题进行求解。

(2)多目标优化算法归结起来有传统优化算法和智能优化算法两大类。

传统优化算法包括加权法、约束法和线性规划法等,实质上就是将多目标函数转化为单目标函数,通过采用单目标优化的方法达到对多目标函数的求解。

智能优化算法包括进化算法(Evolutionary Algorithm, 简称EA)、粒子群算法(Particle Swarm Optimization, PSO)等。

两者的区别——传统优化技术一般每次能得到Pareo解集中的一个,而用智能算法来求解,可以得到更多的Pareto解,这些解构成了一个最优解集,称为Pareto最优解(任一个目标函数值的提高都必须以牺牲其他目标函数值为代价的解集)。

①MOEA通过对种群 X ( t)执行选择、交叉和变异等操作产生下一代种群 X ( t + 1) ;

②在每一代进化过程中 ,首先将种群 X ( t)中的所有非劣解个体都复制到外部集 A ( t)中;

③然后运用小生境截断算子剔除A ( t)中的劣解和一些距离较近的非劣解个体 ,以得到个体分布更为均匀的下一代外部集 A ( t + 1) ;

④并且按照概率 pe从 A ( t + 1)中选择一定数量的优秀个体进入下代种群;

⑤在进化结束时 ,将外部集中的非劣解个体作为最优解输出。

NSGA一II算法的隐薯基本思想:

(1)首先,随机产生规模为N的初始种群,非支配排序后通过遗传算法的选择、交叉、变异三个基本操作得到第一代子代种群;

(2)其次,从第二代开始,将父代种群与子岁猛代种群合并,进行快速非支配排序,同时对每个非支配层中的个体进行拥挤度计算,根据非支配关系以及个体的拥挤度选取合适的个体组成新的父代种群;

(3)最后,通过遗传算法的基本操作产生新的子代种群:依此类推,直到满足程序结束的条件。

非支配排序算法:

考虑一个目标函数个数为K(K1)、规模大小为N的种群,通过非支配排序算法可以对该种群进行分层,具体的步骤如下:

通过上述步骤得到的非支配个体集是种群的第一级非支配层;

然后,忽略这些标记的非支配个体,再遵循步骤(1)一(4),就会得到第二级非支配层;

依此类推,直到整个种群被分类。

拥挤度 ——指种群中给定个体的周围个体的密度,直观上可表示为个体。

拥挤度比较算子:

设想这么一个场景:一群鸟进行觅食,而远处有一片玉米地,所有的鸟都不知道玉米地到底在哪里,但是它们知道自己当前的位置距离玉米地有多远。那么找到玉米地的最佳策略,也是最简单有效的策略就是是搜寻目前距离玉米地最近的鸟群的周围区域。

基本粒子群算法:

粒子群由 n个粒子组成 ,每个粒子的位置 xi 代表优化问题在 D维搜索空间中潜在的解;

粒子在搜索空间中以一定的速度飞行 , 这个速度根据它本身的飞行经验和同伴的飞行经验来动态调整下一步飞行方向和距离;

所有的粒子都有一个被目标函数决定的适应值(可以将其理解为距离“玉米地”的距离) , 并且知道自己到目前为止发现的最好位置 (个体极值 pi )和当前的位置 ( xi ) 。

粒子群算法的数学描述 :

每个粒子 i包含为一个 D维的位置向量 xi = ( xi1, xi2, …, xiD )和速度向量 vi = ( vi1, vi2,…, viD ) ,粒子 i搜索解空间时 ,保存其搜索到的最优经历位置pi = ( pi1, pi2, …, piD ) 。在每次迭代开始时 ,粒子根据自身惯性和经验及群体最优经历位置 pg = ( pg1, pg2, …, pgD )来调整自己的速度向量以调整自身位置。

粒子群算法基本思想:

(1)初始化种群后 ,种群的大小记为 N。基于适应度支配的思想 ,将种群划分成两个子群 ,一个称为非支配子集 A,另一个称为支配子集 B ,两个子集的基数分别为 n1、n2 。

(2)外部精英集用来存放每代产生的非劣解子集 A,每次迭代过程只对 B 中的粒子进行速度和位置的更新 ;

(3)并对更新后的 B 中的粒子基于适应度支配思想与 A中的粒子进行比较 ,若 xi ∈B , ϖ xj ∈A,使得 xi 支配 xj,则删除 xj,使 xi 加入 A 更新外部精英集 ;且精英集的规模要利用一些技术维持在一个上限范围内 ,如密度评估技术、分散度技术等。

(4)最后 ,算法终止的准则可以是最大迭代次数 Tmax、计算精度ε或最优解的最大凝滞步数 Δt等。

多目标优化问题的基本思想是什么?

多目标就是多个目标实现,比如车间调度:既要实现短的生产周期、又要低成本、高的设备利用率、还要质量要求。多目标一般前置多条件约束,且告厅陆条件袜顷还是多伏肢项式不确定问题,属于N-P难题。

关于多目标优化的权重确定和多目标优化方法及实例解析的介绍到此就结束了,不知道你从中找到你需要的信息了吗 ?如果你还想了解更多这方面的信息,记得收藏关注本站。

免责声明:本文系转载,版权归原作者所有;旨在传递信息,不代表一休教程网的观点和立场。