本篇文章给大家谈谈权重系数的优化函数,以及权重点的优化方法对应的知识点,希望对各位有所帮助,不要忘了收藏本站喔。

本文目录一览:

如何用python实现Markowitz投资组合优化

多股票策略回测时常常遇到问题则扮。

仓位如何分配?

你以为基金经理都是一拍脑袋就等分仓位了吗?

或者玩点玄乎的斐波拉契数列?

OMG,谁说的黄金比例,让我看到你的脑袋(不削才怪)!!

其实,这个问题,好多好多年前马科维茨(Markowitz)我喜爱的小马哥就给出答案——投资组合理论。

根据这个理论,我们可孙败灶以对多资产的组合配置进行三方面的优化。

1.找到有效前沿。在既定的收益率下使组合的方差最小。

2.找到sharpe最优的组合(收益-风险均衡点)

3.找到风险最小的组合

跟着我,一步两步,轻松实现。

该理论基于用均值和方差来表述组合的优劣的前提。将选取几只股票,用蒙特卡洛模拟初步探究组合的有效前沿。

通过最大Sharpe和最小方差两种优化来找到最优的资产组合配置权重参数。

最后,刻画出可能的分布,两种最优以及组合的有效前沿。

注:

文中的数据API来自量化平台聚宽,在此表示感谢。

原文见【组合管理】——投资组合理论(有效前沿)(包含正态检验部分)

0.导入需要的包

import pandas as pd

import numpy as np

import statsmodels.api as sm #统计运算

import scipy.stats as scs #科学计算

import matplotlib.pyplot as plt #绘图

1.选取几只感兴趣的股票

000413 东旭光电,000063 中兴通讯,002007 华兰生物,000001 平安银行,000002 万科A

并比较一下数据(2015-01-01至2015-12-31)

In[1]:

stock_set = [‘000413.XSHE’,’000063.XSHE’,’002007.XSHE’,’000001.XSHE’,’000002.XSHE’]

noa = len(stock_set)

df = get_price(stock_set, start_date = ‘2015-01-01′, end_date =’2015-12-31’, ‘daily’, [‘close’])

data = df[‘close’]

#规范化后时序数据

(data/data.ix[0]*100).plot(figsize = (8,5))

Out[1]:

2.计算不同证券的均值、协方差

每年252个交易日,用每日收益得到年化收益。计算投资资产的协方差是构建资产组合过程的核心部分。运用pandas内置方法生产协方差矩阵。

In [2]:

returns = np.log(data / data.shift(1))

returns.mean()*252

Out[2]:

000413.XSHE 0.184516

000063.XSHE 0.176790

002007.XSHE 0.309077

000001.XSHE -0.102059

000002.XSHE 0.547441

In [3]:

returns.cov()*252

Out[3]:

3.给不同资产随机分配初始权重

由于A股不允许建立空头头寸,所有的权重系数均在0-1之间

In [4]:

weights = np.random.random(noa)

weights /= np.sum(weights)

weights

Out[4]:

array([ 0.37505798, 0.21652754, 0.31590981, 0.06087709, 0.03162758])

4.计算预期组合年化收益、组合方差和组合标准差

In [5]:

np.sum(returns.mean()*weights)*252

Out[5]:

0.21622558669017816

In [6]:

np.dot(weights.T, np.dot(returns.cov()*252,weights))

Out[6]:

0.23595133640121463

In [7]:

np.sqrt(np.dot(weights.T, np.dot(returns.cov()* 252,weights)))

Out[7]:

0.4857482232609962

5.用蒙特卡洛模拟产生大量随机组合

进行到此,我们最想知道的是给定的一个股票池(证券组合)如何找到风险和收益平衡的位置。

下面通过一次蒙特卡洛模拟,产生大量随机的枯型权重向量,并记录随机组合的预期收益和方差。

In [8]:

port_returns = []

port_variance = []

for p in range(4000):

weights = np.random.random(noa)

weights /=np.sum(weights)

port_returns.append(np.sum(returns.mean()*252*weights))

port_variance.append(np.sqrt(np.dot(weights.T, np.dot(returns.cov()*252, weights))))

port_returns = np.array(port_returns)

port_variance = np.array(port_variance)

#无风险利率设定为4%

risk_free = 0.04

plt.figure(figsize = (8,4))

plt.scatter(port_variance, port_returns, c=(port_returns-risk_free)/port_variance, marker = ‘o’)

plt.grid(True)

plt.xlabel(‘excepted volatility’)

plt.ylabel(‘expected return’)

plt.colorbar(label = ‘Sharpe ratio’)

Out[8]:

6.投资组合优化1——sharpe最大

建立statistics函数来记录重要的投资组合统计数据(收益,方差和夏普比)

通过对约束最优问题的求解,得到最优解。其中约束是权重总和为1。

In [9]:

def statistics(weights):

weights = np.array(weights)

port_returns = np.sum(returns.mean()*weights)*252

port_variance = np.sqrt(np.dot(weights.T, np.dot(returns.cov()*252,weights)))

return np.array([port_returns, port_variance, port_returns/port_variance])

#最优化投资组合的推导是一个约束最优化问题

import scipy.optimize as sco

#最小化夏普指数的负值

def min_sharpe(weights):

return -statistics(weights)[2]

#约束是所有参数(权重)的总和为1。这可以用minimize函数的约定表达如下

cons = ({‘type’:’eq’, ‘fun’:lambda x: np.sum(x)-1})

#我们还将参数值(权重)限制在0和1之间。这些值以多个元组组成的一个元组形式提供给最小化函数

bnds = tuple((0,1) for x in range(noa))

#优化函数调用中忽略的唯一输入是起始参数列表(对权重的初始猜测)。我们简单的使用平均分布。

opts = sco.minimize(min_sharpe, noa*[1./noa,], method = ‘SLSQP’, bounds = bnds, constraints = cons)

opts

Out[9]:

status: 0

success: True

njev: 4

nfev: 28

fun: -1.1623048291871221

x: array([ -3.60840218e-16, 2.24626781e-16, 1.63619563e-01, -2.27085639e-16, 8.36380437e-01])

message: ‘Optimization terminated successfully.’

jac: array([ 1.81575805e-01, 5.40387481e-01, 8.18073750e-05, 1.03137662e+00, -1.60038471e-05, 0.00000000e+00])

nit: 4

得到的最优组合权重向量为:

In [10]:

opts[‘x’].round(3)

Out[10]:

array([-0. , 0. , 0.164, -0. , 0.836])

sharpe最大的组合3个统计数据分别为:

In [11]:

#预期收益率、预期波动率、最优夏普指数

statistics(opts[‘x’]).round(3)

Out[11]:

array([ 0.508, 0.437, 1.162])

7.投资组合优化2——方差最小

接下来,我们通过方差最小来选出最优投资组合。

In [12]:

#但是我们定义一个函数对 方差进行最小化

def min_variance(weights):

return statistics(weights)[1]

optv = sco.minimize(min_variance, noa*[1./noa,],method = ‘SLSQP’, bounds = bnds, constraints = cons)

optv

Out[12]:

status: 0

success: True

njev: 7

nfev: 50

fun: 0.38542969450547221

x: array([ 1.14787640e-01, 3.28089742e-17, 2.09584008e-01, 3.53487044e-01, 3.22141307e-01])

message: ‘Optimization terminated successfully.’

jac: array([ 0.3851725 , 0.43591119, 0.3861807 , 0.3849672 , 0.38553924, 0. ])

nit: 7

方差最小的最优组合权重向量及组合的统计数据分别为:

In [13]:

optv[‘x’].round(3)

Out[13]:

array([ 0.115, 0. , 0.21 , 0.353, 0.322])

In [14]:

#得到的预期收益率、波动率和夏普指数

statistics(optv[‘x’]).round(3)

Out[14]:

array([ 0.226, 0.385, 0.587])

8.组合的有效前沿

有效前沿有既定的目标收益率下方差最小的投资组合构成。

在最优化时采用两个约束,1.给定目标收益率,2.投资组合权重和为1。

In [15]:

def min_variance(weights):

return statistics(weights)[1]

#在不同目标收益率水平(target_returns)循环时,最小化的一个约束条件会变化。

target_returns = np.linspace(0.0,0.5,50)

target_variance = []

for tar in target_returns:

cons = ({‘type’:’eq’,’fun’:lambda x:statistics(x)[0]-tar},{‘type’:’eq’,’fun’:lambda x:np.sum(x)-1})

res = sco.minimize(min_variance, noa*[1./noa,],method = ‘SLSQP’, bounds = bnds, constraints = cons)

target_variance.append(res[‘fun’])

target_variance = np.array(target_variance)

下面是最优化结果的展示。

叉号:构成的曲线是有效前沿(目标收益率下最优的投资组合)

红星:sharpe最大的投资组合

黄星:方差最小的投资组合

In [16]:

plt.figure(figsize = (8,4))

#圆圈:蒙特卡洛随机产生的组合分布

plt.scatter(port_variance, port_returns, c = port_returns/port_variance,marker = ‘o’)

#叉号:有效前沿

plt.scatter(target_variance,target_returns, c = target_returns/target_variance, marker = ‘x’)

#红星:标记最高sharpe组合

plt.plot(statistics(opts[‘x’])[1], statistics(opts[‘x’])[0], ‘r*’, markersize = 15.0)

#黄星:标记最小方差组合

plt.plot(statistics(optv[‘x’])[1], statistics(optv[‘x’])[0], ‘y*’, markersize = 15.0)

plt.grid(True)

plt.xlabel(‘expected volatility’)

plt.ylabel(‘expected return’)

plt.colorbar(label = ‘Sharpe ratio’)

Out[16]:

权重系数的优化函数(权重点的优化方法)插图

pymoo如何让不同目标之前权衡

加权和法。

1、通过给敏睁不同的目标分配不同的权重系数,将多个目余野标函数转换成一个单一的函数,从而简化优化问题。可以根据实际情况确定权重系数,以适应不同的需求。

2、Pareto支配法则:利用Pareto支配关系来评估不同的解集,在该关系下,如果一个解集对于所有目标函数都优于另一个解集,则认为该解集是更好的选择。

3、前沿面法:该方法可以同时考虑多个目标,并且竖拿喊能够生成所有可能的非劣前沿面。

在地理信息系统中,反距离空间插值,样条函数插值,普通克里金插值结果的区别,求解释

反距离加权法(Inverse Distance Weighted)。反距离加权法是一种常用而简单权重系数的优化函数的空间插值方法权重系数的优化函数,IDW是基于“地理第一定律”的基本假设:即两个物体相似性随他们见的距离增大而减少。它以插值点与样本点间的距离为权重进行加权平均权重系数的优化函数,离插值点越近的样本赋予的权重越大权重系数的优化函数,此种方法简单易行权重系数的优化函数,直观并且效陪祥率高,在已知点分布均匀的情况下插值效果好,插值结果在用于插值数据的最大值和最小值之间,但缺点是易受极值的影响。

样条插值法(Spline)。样条插值是使用一种数学函数,对一些限定的点值,通过控制估计方差,利用一些特征节点,用多项式拟合的方法来产生平滑的插值曲线。这种方法适用于逐渐变化的曲面,如温度、高程、地下水位高度或污染浓度等。该方法优点是易操作,计算量不大,缺点是难以对误差进行估计,采样点稀少时效果不好。样条插值法又分为张力样条插值法(Spline with tension)和规则样条插值法(regularized Spline)。为避免产生极值的现象一般选用张力样条插值法。

克里金法(Kring)。克里金方法最早是由法国地理学家Matheron和南非矿山工程师Krige提出的,用于矿山勘探。这种方法认为在空间连续变化的属性是非常不规则的,用简单的平滑函数进行模拟将出现误差,用随机表面函数给予描述会比较恰当。克里金方法的关键在于权重系数的确定,该方法在插值过程中根据某种优化准则函数来动态地决定变量的数值,从而使内插函数处于最佳状态。克里金方法考闷乱正虑了观测的点和被估计点的位置关系,并且也考虑各观测点之间的相对位置关系,在点稀少时插值效果比反距离权重等方法要好。所以利用克里金方法进行空间数据插值往往取得理想的效果。克里金算法提供的半变异函数模型有高斯、线形、球形、阻尼正弦和指数模型等,在对气象要素场插蚂悔值时球形模拟比较好。

关于权重系数的优化函数和权重点的优化方法的介绍到此就结束了,不知道你从中找到你需要的信息了吗 ?如果你还想了解更多这方面的信息,记得收藏关注本站。

免责声明:本文系转载,版权归原作者所有;旨在传递信息,不代表一休教程网的观点和立场。